
Issues in Platform-Independent Support for

Multimedia Desktop Conferencing and Application

Sharing

O. Kim, P. Kabore, J.P. Favreau and H. Abdel-Wahab�

Multimedia & Digital Video Technologies Group

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, Md 20899

(okim,kabore,favreau,wahab)@snad.ncsl.nist.gov

Abstract

Although Multimedia desktop conferencing and application sharing among geograph-

ically dispersed users are increasingly popular modalities, their spread is inhibited by

platform-dependency problems. In this paper, an approach which exploits the use of the

Java programming language to accommodate di�erent hardware and window systems is

investigated and a prototype is implemented. Our approach is based on replicated tool ar-

chitecture in which each participant runs a copy of the application and the activity of each

user is multicast to all the participants in the conference. The problems associated with

this approach such as view synchronization and replicated object management are among

the issues addressed in our research. In addition, we are developing standard functions

and mechanisms that allow conference participants to seamlessly use the audio and video

features available on most PC's and workstations. Our research on multimedia stream

synchronization and adaptation, the incorporation of reliable multicasting and the devel-

opment of distributed control algorithms are expected to result in increased conference

quality, performance and robustness.

KEY WORDS: High Bandwidth Applications, Multimedia Communications, Java, Interoperability,

Computer Supported Cooperative Work, Desktop Conferencing, Multicasting, Distributed Systems.

�NIST faculty and Professor of Computer Science at Old Dominion University, Norfolk, Virginia

1

1 Introduction

With the proliferation of high bandwidth computer networks and powerful multimedia work-

stations, it is now feasible to build collaborative systems that allow users to have real-time

interaction with each other and remotely work together as a team. In addition to using audio

and video we believe that it is very productive if all participants simultaneously have full access

to their shared computer-stored materials and have the ability to share and manipulate them

together.

Most current existing collaborative systems require the participants in a conference to use

the same window system. For example, XTV [2, 3] and Suite [9] are based on the X window

system and require that the participant's machines run the X server. Other systems such

as WTV [6] have tried to replicate the functionality of XTV replacing the X windows with

Microsoft Windows. Ideally, each participant in a collaborative conference should be able to

use whatever platform he or she prefers. For example, some may use PCs running MSWindows

95. Others may use workstations running di�erent version of UNIX and X windows, yet others

may use PowerPC Macintoshs. Before the introduction of Java, this sort of collaboration was

enormously di�cult to achieve. Java programs are compiled to an architecture neutral byte-

code format and thus can run on any system that implements a Java virtual machine and its

abstract window system. Java provides a fortuitous opportunity for the Computer Supported

Cooperative Work (CSCW) [12] community to overcome a barrier which hitherto hindered the

wide spread use of collaboration technology.

To overcome the platform-dependency problem for application sharing in heterogeneous

platforms, NIST (National Institute of Standards and Technology) and ODU (Old Dominion

University) are jointly conducting a research project to investigate mechanisms for sharing mul-

timedia applications among participants on not only heterogeneous windowing and operating

systems, but on di�erent hardware platforms.

We have developed mechanisms to intercept, distribute and recreate the user events that

allow single-user Java applications to be shared, without modi�cations, among conference

participants. These mechanisms can be run transparently on any system implementing Java.

The mechanisms incorporate the services of network communications, conference management

and oor control management. The network communications services include distribution of

the data among conference participants; conference management includes joining and leaving

a session; and oor control includes participant's control and interaction with the application

during a session.

In this paper, we refer to the prototype which has been developed as the Java Collaborative

Environment (JCE). We are now in the process of augmenting JCE to include both audio and

2

Java App 1 Java App 2
Session
Interface

Session
Control
Manager

Event Controller

Host B

Java App 1 Java App 2
Session
Interface

Control
Manager

Event Controller

Host A

Sender Sender
Session

for app2 for app1

Consumer
for app1

Consumer Consumer
for app2
Consumer

modified java.awt modified java.awt

 (Distributor)
Session Server

To/from all other
participants

Figure 1: Overall System Architecture

video in an integrated platform-independent desktop conferencing system.

The remainder of the paper is organized as follows: Section 2 describes the JCE system

architecture and provides an overview of its major components and functions. Section 3 dis-

cusses the problems associated with executing multiple replicated copies of the same programs.

In Section 4 we show some applications for event logging: late-joining and playback. Section

5 concentrates on communications issues such as the use of reliable multicasting, conference

information service and conference control. Support for platform-independent audio and video

is discussed in Section 6. The quality of session attributes such as multi-media synchronization

and adaptation are presented in Section 7. Finally, Section 8 gives our conclusions and future

work.

2 JCE System Architecture

The JCE is a framework for shared interactive multimedia applications. Figure 1 depicts the

overall system architecture, and the relationship and communication paths among all processes

of the system, for a given conferencing session.

The Java applications denoted as Java App 1 (and 2) in Figure 1 are not part of the

3

system. They are collaboration-unaware single-user applications developed using the standard

java.awt package [18]. Participants can invoke one or more applications in a given conference.

Our model is based on the replicated architecture [13] in which an instance of each application

runs locally at each participant's site and the activity of each user is distributed to all the

participants in a conference.

As shown in Figure 1 the JCE provides a modi�ed java.awt class library and consists of

three components: the Session Control Manager and its Interface, the Event Controller, and

the Session Server. These components are discussed in the next two subsections.

2.1 Modi�ed Java Windowing Package

In the standard java.awt package [18], Component class is the superclass of all the GUI

components and it contains the user event handling. The unmodi�ed handleEvent method in

Component class processes the user events. We have modi�ed this handleEvent method to

provide a mechanism that intercepts the user events from each application, and sends them to

the Session Server, giving all participants the same application state.

The following code fragments show the modi�ed handleEventmethod inComponent class,

with modi�cations shown in italic.

import EventController;

public class Component implements ImageObserver {

// existing code

public boolean handleEvent(Event evt) {

if (!EventController.sender(evt))

return false;

switch(evt.id) {

// remaining existing code

}

return false;

}

}

This approach allows Java single-user applications to be shared, and enables their simulta-

neous viewing and collaboration among conference participants.

4

2.2 System Components

The Session Control Manager (SCM) and the Session Interface combined provide the user

with a graphical interface o�ering the following options: to call, join or leave a session; to start

applications; and to request or release a oor. Each participant is given an SCM process that

exchanges control information with the Server for the duration of the session.

The Event Controller is the core of the collaboration mechanisms. It is composed of two

processes: the event Sender and Consumer. When an application is started an Event Controller

for the application is automatically instantiated by the Session Control Manager. When two or

more applications are shared, two or more Consumers are created as shown in Figure 1. The

Sender is declared as a static (i.e., class) method of the Event controller, so only one Sender

method exists for all applications. The Sender method �rst checks the intercepted event to

determine whether or not it should be sent to the Session Server, since events originating from

shared applications are always forwarded. The Consumer processes receive events redistributed

by the Session Server from other participants, and post them to the local instance of the

application as if they were originated locally. This process is completely transparent to the

application, i.e., the application is unaware that it is being shared.

The Session Server in Figure 1 provides three distinct functions: distribution of all messages

to all participants; group management for a given session, including joining or leaving a session;

and server oor control management.

2.3 Alternative Implementations

Besides the modi�cations to the standard java.awt package [18] which allow existing single-

user applications to be shared, as detailed above, extensions to the standard package have

been developed which allow programmers to develop new collaboration applications or modify

existing single-user applications [4]. The advantages of each approach are noted below.

Advantages of Modi�ed Library

The existing and new single-user applications can be shared transparently, so that application

developers do not have to be concerned about whether the applications are collaboration-aware.

Further, since Component class is the superclass of all the GUI components, the JCE

need not be updated when new GUI components are developed and introduced. In contrast,

the extended libraries must be updated to account for the new components.

5

Advantages of Extended Library

This method provides more e�ciency and exibility in object event handling in shared appli-

cations. Each GUI component derived from the Component superclass handles its own user

events, thus eliminating those events coming from other than shared applications such as the

Session Control Manager.

Moreover, the extended library requires that no change needs to be made to the environment

by changing the CLASSPATH variable, whereas the use of the modi�ed library requires that

the new java.awt package must be installed and used at runtime.

3 Replication Management

Most applications need to create or use objects during execution, for instance, the environment

variable, the initialization dot �les, and the �les storing multimedia data. These objects must

be replicated and available at each site for the correct operation of the JCE system. There

are three types of objects to be replicated and managed: environment, operational and �nal

objects.

3.1 Environment Objects

In order to enforce strict WYSIWIS (What You See Is What I See), each replica of the shared

application must have the same operating environment (e.g., in UNIX/X systems terminology,

each site should have the same environment variables, same initialization �les and the same

X resource �les). Before the invocation of each copy of the shared application at each site,

we must ensure that all sites have identical operating environments. Since each application

may have a speci�c and di�erent operating environment from other applications, any solution

to this problem requires obtaining speci�c information about each application. This can be

achieved by having an environment pro�le for each shared application that contains the oper-

ating environment speci�cation and default locations where the values of these resources can

be obtained, replicated and installed at each participant's site prior to the execution of the

application. It is prudent to save and later restore the original operating environment so that

the user can run the application in single-user mode according to his/her own preferred set-

tings of the application. This concept of common operating environment and pro�le for each

shared application is important to guarantee full and strict WYSIWIS behavior. This does

not preclude the participants from sharing applications in which users see the same data in

di�erent ways such as local selection of font styles and sizes according to each user's preference.

6

3.2 Operational Objects

The second set of objects needed during the life-time of shared applications is the operational

�les. These �les may include data, images, audio clips, video clips, etc. that are needed during

the execution of the program. If these �les are known and available in advance, then we can

specify an operational pro�le for each application that contains a list of these �les and a default

location where it can be obtained. Prior to the execution of the application, these �les are

distributed and installed in the appropriate \well-known" directories. Again, one ought not to

destroy or alter the original copies of these �les so they can be restored upon the termination

of the shared application.

3.3 Final Objects

The third set of objects is the newly created �les or the �les to be modi�ed during the shared

application life-span. In this case a �nal pro�le is used to list these �les and specify whether

each participant should keep a copy. It may be necessary (e.g., for integrity or security reasons)

to specify for some �les that only one site should keep a copy and that all other copies of these

�les should be deleted.

4 Late Comers, Recording and Playback

Saving all input events to each shared application by the conference server is called event

logging and this is similar to transaction logging in database systems [10]. There are many

applications for event logging in JCE:

1. Late Comers: Participants who join an ongoing conference after the start of at least

one shared application are called Late-Comers [8]. Although in JCE, participants may

join the conference any time after it starts, they may not have the same view for those

shared applications which started before they joined. To bring the late-comers views in

synchronization with all other participants, we may send all the logged events to their

instances of those shared applications. The time it takes to achieve this synchronization

of views is a function of the number of the accumulated events. This in turn depends

on how late the participants join and how much activity occurred before they join. An

open research issue is to investigate whether it is necessary to send all the logged events

or only send a small fraction of these events similar to what XTV does in its handling of

late-comers [8].

7

2. Recording/Playback: Event logging is considered to be a form of session recording. To

playback a recorded session, all it takes is to start an instance of each involved application

and feed it with the events saved in the log �le. The playback may be seen by a single

person or by all the participants in a conference like any other \live" shared application.

This can be very useful in many applications such as:

� to investigate why an application has crashed and what is the sequence of events

that have led to it.

� to use it as a teaching aid by recording the steps of interaction with an application

which users may view at a later time.

5 Communication and Distributed Control Issues

This section is devoted to issues of system performance, usability and robustness. To increase

the system performance as the number of participants increases we should use reliable mul-

ticasting for data transport instead of the current server-based (star-topology) TCP connec-

tions [16]. To make it easy for participants to use the system and join any on-going conferences

or start new conferences, we should use the services provided by CIS, a real-time, internet-based

Conferencing Information Server, as discussed in Section 5.2. A robust conferencing system

should not depend on one central process for its control so a set of distributed algorithms must

be developed to replace the functions performed by the current conference server.

5.1 Use of Reliable Multicasting

In our current implementation, all the participants are connected to the server with TCP

connections as shown in Figure 2.

If one participant needs to send a message to all other participants, he or she sends it to the

server which in turn distributes it to all participants, one at a time, using the TCP connections.

This may be acceptable if the number of participants is small (e.g., 4 or 5), but as the number

of participants increases, the system performance degrades and the session quality is reduced,

as measured by several parameters, such as view synchronization, to be discussed in Section

7.1.

The use of reliable multicasting (e.g., RMP provided by Berkeley/West Virginia [15])

greatly improves both the performance and the quality of session. To use multicasting, each

participant and the server will have a UDP socket in addition to the existing TCP sockets

as shown in Figure 2. TCP connections are used for one to one communications among the

participants and the server. In the current JCE implementation if the server is down the whole

8

C

C

C

C

C

C

C ClientServer

UDP Socket

TCP Connection

for Multicasting

Figure 2: Communications among Clients and Server

conference will be terminated and can not continue. However, as discussed in Section 5.3, we

plan to distribute the server functions among all the participants and eliminate the need for

TCP connections. At that time we will have a truly distributed conferencing system that is

not subject to a single point of failure.

5.2 The Conferencing Information Service

In order to facilitate the process of joining a conference, a conferencing information service

(CIS) [1] is utilized. This service allows a conference to advertise speci�c information about

itself to help potential participants to �nd out information about the conference and allow

them to join. In order to use CIS, a conferencing system like JCE needs to implement the

CIS advertisement protocol and provide an interface that allows users to browse through the

information about various conferences and join any selected conference. This interface may

be implemented as a stand-alone application or as a Java applet that can be used within an

Internet browser.

9

5.3 Distributed Management of Conference Resources

In our current architecture the server plays a central and vital role in connecting the partic-

ipants, using the star-topology TCP connections shown in Figure 2, and performing various

conference management functions such as oor management. As we have seen earlier, we can

use reliable multicasting to replace the role of the server to distribute messages among the par-

ticipants. However, replacing the conference management function and distributing it among

the participants is much harder and requires the design and implementation of a wide variety

of distributed algorithms. In particular two algorithms are needed to:

1. maintain an up-to-date list of conference participants and to announce this list to the

Conferencing Information Server, and

2. to grant the oor to at most one participant at a time.

6 Platform-Independent Audio and Video Support

Beside shared applications, audio followed by video in this order are important to support full

and e�ective collaboration among participants. In our project, we provide audio support as a

standard feature, since the Internet bandwidth may now reasonably support the transport of

audio conversations.

Almost all PCs and Workstations now have audio devices (microphone and speakers),

though they are often not compatible with each other and may use di�erent audio formats.

Thus, our task here is to ensure that all participants can talk and hear each other without

worrying about the heterogeneity of their respective audio devices. Our approach to resolving

this issue is to identify the most common audio format and con�guration of audio devices and

save it as a Common Audio Format and Con�guration (CAFC) �le. Whenever a participant

joins a session, his/her audio devices are examined to see if they can be con�gured to the

speci�cations stored in the CAFC �le. If it is determined that a participant's device cannot

be con�gured or does not support the common audio format speci�ed in the CAFC �le, then

an appropriate action such as format translation or quality of service degradation for that

participant is taken.

Despite advances in compression technology, video communication requires high bandwidth

and not many PCs or workstations are equipped with video cards and cameras, which are still

expensive components relative to the basic price of the host machines and must be purchased

and installed separately. However, we expect in the near future that Internet bandwidth

will increase and the video hardware cost will decrease to the point where desktop video

10

communication will become as common as audio. In a two-party system, it is customary

to display the other person's video image. When there are multiple participants, however,

determining which participant's video image is to be displayed at which time is a matter to

be decided by each speci�c application. For example, in the Interactive Remote Instruction

(IRI) system [5] used for distance learning, the teacher's image is always displayed on each

student's workstation and only those students engaged in active discussion with the teacher

are displayed, in smaller windows. In a general desktop conferencing system, we would like to

provide general mechanisms and protocols that users can con�gure according to their particular

needs and preferences. For example, if someone speaks, his image may be displayed by clicking

a button if so desired. In a formal meeting where there is a chairman, the group may decide

that the chairman's image be always displayed. This issue of determining how many images to

display, the quality and size of each image, and when these images are to be displayed is one

of the goals of our project. Our other major goal is to support interoperation among many

di�erent and diverse video devices using di�erent hardware platforms. If some participants

have no, or incompatible video capabilities, they can still participate in the conference using

only the audio channels.

To achieve maximum e�ciency, in our implementation, we intend to use the traditional

IP multicasting to send audio data among the participants. In addition, the standard IGMP

(Internet Group Management Protocol) [14, 17] will be used to manage the process of joining

and leaving a conference.

7 Synchronization and Adaptation Issues

In order to improve the conference quality as perceived by the participants we must address

the following issues and search for innovative solutions.

7.1 View Synchronization

As we described earlier, the JCE is based on the replicated model [13]; that is - for n participants

there are n copies of the same application running concurrently, possibly on di�erent hardware

(e.g., from powerful workstations to low-end PCs) and software (e.g., operating systems and

window systems). Some of the n participants may be connected by a high-speed Intranet,

while others are connected to the global Internet with relatively slow links. In this networking

environment, it is inevitable that there will be a skew or lack of synchronization among what

all the participants see in the shared application windows. Our objective is to reduce these

synchronization problems to a minimum and bring it to an acceptable human tolerance level

11

to preserve the concept of WYSIWIS. This problem does not exist in a two-party conferencing

system. However, when a large number of participants is involved, the problem is signi�cant

and requires an innovative solution. One such solution is to sense and measure the state of

each replica of the shared application. The gathered feedback data can then be used to slow

down the ow of events to the faster participants or to speed up the delivery of events to the

slower sites.

7.2 Multi-Stream Synchronization

An important problem in multimedia applications (e.g., remote learning, video conferencing

and information-on-demand) is the temporal synchronization of continuous and discrete media

that have the same or di�erent sources. Streams can be captured at the transmitter and a

temporal relation between them established. The playback times, at the destination, for the

corresponding streams may di�er due to communication and network delays, or the di�erence

between two consecutive schedule times of a process, for example. Temporal synchronization

requires the preservation of the temporal dependencies among various media at the destination.

For example, consider the following scenario. In a collaborative session, at time t0, a participant

speaks, then, at a later time t1, he/she starts a shared Java application (e.g., whiteboard).

On other participant's workstations, it is not su�cient just to play the streams, temporal

synchronization must also be maintained. Within [t0; t1], the speaker's audio and video need

to be synchronized, and the time independent stream generated by the Java application should

be synchronized with the other two continuous streams.

There are two particular issues that need to be addressed for temporal synchronization:

intrastream synchronization and interstream synchronization [13]. Intrastream synchroniza-

tion policies eliminate jitter when playing a periodic stream. Interstream synchronization

policies support orchestrated multimedia presentations, preserving the time dependencies be-

tween streams when captured. The relations that specify the temporal dependencies between

streams are called synchronization speci�cation [13]. In live synchronization, the application

at the transmitter is responsible for providing the synchronization speci�cation, while the ap-

plication at the destination is responsible for providing a synchronized presentation according

to this information.

The objective of our work is to provide a exible and robust solution for the temporal

interstream synchronization of time dependent (audio, video) and time independent (text,

graphics, shared windows) streams in a multimedia application.

12

7.3 Inter-Stream Adaptation

In collaborative multimedia systems, there is a need for overall control, beyond the level of

quality of service (QoS) of individual streams. The quality of the conference as perceived by

the end user, must be determined by the end application. At every instant in time, the quality

of the conference depends on the priorities of the on-going streams, from the user's perspective,

as well as on the actual QoS o�ered by the system to each of these streams. The main objective

is to keep a collaborative session going, with acceptable overall quality. This is achieved by

employing a monitoring mechanism at the application level for monitoring the perceived QoS

of each stream. For example, a two way audio-video application may choose to degrade the

quality of video only, while keeping the audio quality at the same high level.

A system which is not aware of this inter-stream correlation, may degrade the performance

of all streams with an equal proportion, in an attempt to react to the overload situation in a

fair way. Moreover, the same application may have di�erent priorities for di�erent streams,

at every instant in time. Building on the same example mentioned above, if there were a

conversation between two physicians, and at a certain point in the conference, the video image

of one of the participants was replaced by a VCR tape playback of an operation, then the

application may prefer a degradation in the quality of the audio rather than that of the video, in

reaction to any overload situations. In such complex collaborative applications, a compromise

in the quality of one stream, in favor of another may not only be due to temporary overload

situations, but it may be due to inherent capacity constraints in the system. For instance,

a video conferencing application supporting several simultaneous participants, may not �nd

enough network bandwidth, or system processing capability, to send a full motion video stream

of each participant, at 30 frames per second. As an alternative, each participant may receive

a full motion video stream for the speaker, and lower frame rate video streams for other

participants. The previous examples suggest that, in collaborative multimedia systems, there

is a need for overall control, beyond the level of QoS of individual streams, for a particular

application.

8 Conclusions and Future Work

In this paper we have described our current ongoing research and the major issues and problems

associated with developing platform-independent desktop conferencing systems that integrate

application sharing, audio, video and conference management functions. Among those issues

addressed in some details are replication management, accommodating late comers, session

recording and playback, scalability through the use of reliable multicasting in both reliable

13

and unreliable (raw IP) forms, global internet conference information service, the integration

of audio and video, and the synchronization and adaptation of multimedia streams.

In addition, we have demonstrated the important role of Java by implementing the Java

Collaborative Environment (JCE) prototype for application sharing among diverse systems

such as UNIX workstation-based and PC Windows-based systems. The merits of the two

alternative collaborative mechanisms developed in JCE, the modi�ed and the extended ap-

proaches are also discussed. Our next goal is to use JCE from Internet browsers such as the

Netscape Navigator and the Microsoft Internet Explorer. Due to some of the limitation im-

posed by Internet browsers and Java Applets for security and other reasons, the participants

may not be able to perform certain functions. However, we would like to maximize what can

be done through the World-Wide Web, identify those functions that cannot be done through

it and help the users to perform these functions via a parallel stand-alone interface.

References

[1] H. Abdel-Wahab, I. Stoica and F. Sultan, \The Design and Implementation of an Internet

Conference Information System", To appear in Journal of Internetworking Research &

Experience, 1996.

[2] H. Abdel-Wahab and M. Feit, \XTV: A Framework for Sharing X Window Clients in

Remote Synchronous Collaboration", Proceedings, IEEE TriComm '91: Communications

for Distributed Applications & Systems, Chapel Hill, North Carolina, pp. 159-167, April

1991.

[3] H. Abdel-Wahab and K. Je�ay, \Issues, Problems and Solutions in Sharing X Clients on

Multiple Displays", Journal of Internetworking Research & Experience. pp. 1-15, Vol. 5,

No. 1, March 1994.

[4] H. Abdel-Wahab, B. Kvande, S. Nanjangud, O. Kim and J.P. Favreau, \ Using Java for

Multimedia Collaborative Applications", To appear in the PROMS'96: Third Interna-

tional Workshop On Protocols for Multimedia Systems, 1996.

[5] H. Abdel-Wahab, K. Maly, A. Youssef, E. Stoica, C.M. Overstreet, C. Wild, and A. Gupta,

\The Software Architecture and Interprocess Communications of IRI: an Internet-based

Interactive Distance Learning System", WETICE'96, Stanford, California, June 1996.

[6] D. Adams, \WTV: An MS Windows based Collaborative System", Master's Project Re-

port, Department of Computer Science, Old Dominion University, Dec. 1995.

14

[7] G. Comell and C. S. Horstmann, Core Java, Prentice-Hall, 1996.

[8] G. Chung, K. Je�ay and H. Abdel-Wahab, \Accommodating Latecomers in Shared Win-

dow Systems", IEEE Computers, pp. 72-74, Vol. 26, No. 1, January 1993.

[9] P. Dewan and R. Chouldhary, \A high-level and exible framework for implementing

multiuser interfaces", ACM Transaction on Information Systems, Vol. 10, No. 4, 345-380,

(October 1993).

[10] R. Elmasry and Navathe, \Fundamentals of Database Systems," 2nd ed., Addison-Wesley,

1994.

[11] D. Flanagan, Java in a Nutshell, O'Reilly & Associates, 1996.

[12] J. Grudin, \Computer-Supported Cooperative Work: History and Focus", IEEE Com-

puter, Vol. 27, No. 5, 19-26, (May 1994).

[13] R. Steinmetz and K. Nahrstedt,Multimedia: Computing, Communications & Applications

Prentice-Hall, 1995.

[14] W. R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, 1994.

[15] B. Whetten, T. Montgomery, and S. Kaplan, \A High Performance Totally Ordered Mul-

ticast Protocol", Theory and Practice in Distributed Systems, Springer Verlag LCNS 938,

1994.

[16] J. Postel, \Transmission Control Protocol", IETF RFC 793, 1981.

[17] S. Deering, "Host Extensions for IP Multicasting", IETF RFC 1112, 1989.

[18] Abstract Windowing Toolkit (AWT) package, Java Developers Kit (JDK) Version 1.0 API,

Sun Microsystems Inc. Mountain View, CA 94043

15

